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Representation Schemes for Investigating

Non-linear Processes

by

Donald DeVorkin

ABSTRACT

The work is concerned with systems of ordinary

differential equations. A framework is developed in

which a statistical approach to the analysis of the

equations is natural. One seeks the correlations of

the solution in terms of the correlations of initial

conditions and/or forcing functions. General representation

schemes are developed for this purpose. It is shown

that general schemes can converge for arbitrarily large

but finite time. In some special cases, all-time repre-

sentations are obtained.
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INTRODUCTION

(0.1) Preliminary Discussion

At the present time, we are able to enjoy the results of extensive

successful application of linear methods to science and engineering.

This is not to say that even essentially linear problems necessarily

yield to the developed analytical methods of mathematical physics. One

example of what is meant is that we can solve Laplace's equation analyt-

ically in only very special coordinate systems. Nevertheless, since we

can solve many linear problems, we are sometimes able to deduce general

properties for a class of problems, suggest meaningful experiments, and

obtain successful engineering methodology.

The situation for non-linear problems is not nearly so satisfactory.

Some very special problems have been thoroughly treated, but for the most

part, analytical methods have been available to English readers only since

our introduction to the Russian School by Minorsky (1947). Since then,

although numerous books have appeared, the analytical methods available

to us at the present are found to be substantially those in Minorsky

(1947). These methods have one common aspect: The equations must, right

to begin with, be in some sense nearly linear in order that the methods

apply.

In this thesis, we will attack certain classes of non-linear problems

from a different point of view. While one of the results is of a quasi-

linear nature, the rest are truly non-linear in character. These results



contain their own inherent limitations, and hence will channel the kinds

of physical problems to be considered.

(0.2) The Statistical Viewpoint

Wiener (1958) developed a means for synthesizing a class of non-

linear networks. We can characterize this class by the properties:

a) Bounded inputs give bounded outputs.

b) At the present time, the output does not depend on

the nature of the input acting at the infinite past.

For linear networks, one has become used to the impulse as a probe.

That is, we often characterize linear networks by their impulse response.

Wiener shows that for his class of non-linear problems, Brownian motion

is a suitable probe, and that one can synthesize these systems when in

possession of the Brownian motion response. One describes Brownian motion

by its statistical properties and what is really required for the synthesis

procedure are input-output cross correlations.

Let us try this sort of thing for a linear system

~() - -k...E ),(r,, e

where (t) is any representative member of an ergodic ensemble,

and fi k(+)18 exists and <

-2-



Then

The bar denotes ensemble = time average.

For the case where the ensemble is white noise

-4

To obtain () , any ergodic ensemble of functions whose

auto-correlation is a delta-function would suffice. Since the average

%6 (t) "K ('t +() can be taken as well over time as down the

ensemble, only one representative member of the ensemble need be

required.

For the linear system, the higher order moments of the input can

be left arbitrary. The Wiener theory for non-linear synthesis suggests

Brownian motion, all correlations must be specified and there is no

arbitrariness at all. Schetzen (1962) has shown that if a non-linear

network uses up to n-th order products of the input, then a suitable

probe is a representative member of an ergodic ensemble whose first

-3-



2n correlations are the same as for Brownian motion, but whose higher

order correlations are arbitrary.

Through the above ideas, which are primarily concerned with network

synthesis, we can get a look at a fundamental issue in analysis. To do

this we need only to add something about the nature of a Brownian motion

ensemble. Each member of a Brownian motion ensemble is continuous and

defined over all time. Now let 4(t) be a continuous function defined

on an interval of length L Then almost every member of the ensemble

approximates (~t) arbitrarily closely on some interval of length

In a sense, a Brownian motion ensemble is very large. To delineate what

is meant, we construct a very simple ensemble.

Let there correspond to the 0( th member of a Brownian motion

ensemble, a function { (t C , a constant independent of

Our new ensemble has as many members as the Brownian motion ensemble, but

displays no variety of form. The greater the variety, the more an ensemble

will resemble Brownian motion. Then from above, as a network employes

higher and higher order non-linearity, the variety of form displayed by

an input must become greater when it is required that the response of the

network to the input be capable of characterizing the behaviour of the

network.

We are led to the idea that for a system which makes use of all

orders of non-linearity in the input, every input-output situation must

be analysed as a special case when deterministic statements are required.

Hence, we shall in this work, attempt analysis ammenable to statistical

-4-



description of the output or solution in terms of stattstics of the

input.

(0.3) Differential Equations

The non-linear systems which shall concern us here will be

supposed given by a differential equation or by a system of differential

equations. Accordingly, in this section we mention a few standard

ideas of use in dealing with ordinary differential equations. To begin,

consider the linear system of n equations

dx

where X and are column n-vectors and A Is an nxn matrix whose

elements may be functions of t , and , is a colun vector whose

components are -

Let be any nxn matrix. We define

Ba
e B  + + 3 .e = --[ J 3

where I is the identity matrix. If the elements of B are all

finite, then the series which defines each element of the matrix 4

converges absolutely.

AS BA
Note that in general eA e B e B unless A and B

-5 -



commute. For the case A R B A

C ee e A e

These statements are deducible directly from the series definition of

c ASince A commutes with (- A),

-A A (A-)
e e. -e = 1

It will be a help later on to have at our disposal, the Jordan

Cannonical Form for matrices (Friedman, 1956). However, since the state-

ment of the theorem is rather involved, we will here state a simple case.

Let A be any nxn matrix whose n eigenvalues are all distinct.

Then there exists the decomposition of A

A= EDE-

where D is a matrix all of whose elements off the principal diagonal

are zero, while the elements of the principal diagonal are the n distinct

eigenvalues of A . The columns of E are the right eigenvectors

of A . The rows of E -  turn out to be the left eigenvectors of A

Let - be a scalar, and A a constant matrix. Then

At A + A_ + ..

-6-



where At is a matrix each of whose components are those of A

multiplied by

One can define a derivative as follows:

At +

= [A4 Aa-. - e + *

= AeAt

The Jordan Cannonical Form allows a simplification of represen-

A
tation for the matrix e

'f A - EDE-'

eA EDE

--

AE D E - E- -

-FIE + +D - 3FE ) +

= ETE+ DE' E +E-  4, E- 1

= E aD E-'
Since the eigenvalues of A are assumed all distinct,



* 0 o: : o *
A C) C 0

0

0 0 0

This is a simple and convenient form of e It particularly is useful

in headling ordinary differential equation system which we now take up.

Flirt, consider the single n-th order equation

d"x = *: 7a -  ''' * d

The function on the right can of course be non-linear. Lot

dY

cAA"" '

--



We now have a system of equations

j x" r 4(x , a)w)C

- - . . . ,

d -j

By the change of variables introduced, the single n-th order equation

is transformed into a system of n first order differential equations.

However, it is not always possible to transform the first order system

0 a * 3

into a single rn-th order equation of the form

- 1I--x - _x ):., . . , j ,Y

For this reason, it will be preferable to work with systems of first

order equations.

-9-



Lot A be an nxn matrix whose components are constants independent
of time. The linear homogenedus system

Ax
at~ .(0) =Xo

is solvable as

A At X s At
dit=

AeAtx. = . while A(c)

so that 'X (0)= X L 0 , the arbitrary initial condition vector.

For A still a constant matrix and 4 (t) a vector, a partic-

ular solution to the inhomogeneous linear system

ct

is 
+ A ( . -T )

where the integration is carried out on a term by term basis of the

n-vector, e (IT). Note that 0 O. That

,p ; i, indeed a particular solution can be calculated directly.

- 10-



The complete solution which reduces to an arbitrary vector IX

at a 0 is thus

e 0

Consider next the system of first order non-linear differential

equations

where A is again a constant matrix and - (X)) is a vector

whose components are functions of ± and the components of X

It is also supposed that - (0) nen from above

Att

-X (t) e- eAcIJA*iL.rT

It will be convenient later to use this equivalent integral equation

formulation. But so far we have dealt only with systems whose linear

part has constant coefficients.

For the linear system of rn equations

= A

it is known from the theory of ordinary differential equations -that over

any finite time interval, there exists ri independent solutions which

can be arranged as the columns of the nxn matrix H (t) , and that

- 11 -



any solution can be expressd as

Further, the inverse of I (t) exists for all t in the interval.

H (o)-' %(o) = 'Ao

In an analogous manner, the system

is transformed into the integral equation

H H(t) -()- 0

When 4 ( , ".) does not depend on %. , the integral equation

becomes that patticular solution to the linea' Inhomogeneous system

- A + . (t)

which reduces to () at 0 =0

- 12 -



(0.4) All-Time Representations and Volterra Functional.

A functional is a mapping of a function space into the real line.

Lot us take the function space to be the set X of continuous functions

(t) with 6] -Then to every -~() is mades

to correspond a real number F [ LCi) called a functional.

We call an expression of the form

a regular linear functional on the function space X . W is
th

fixed and assumed continuous. A regular homogeneous functional of n

degree is defined analogously as:

b )

Lot Fn ~ be a regular homogeneous functional of n th

degree. Then the form ~3 ~ ~]is called a functional
0

polynomial. For the usual familiar polynomials, we have the following

important representation (or approximation) theorem of Weierstrass as

stated by Apostol (1957).

Let 4 be real-valued and continuous on a closed interval

_o ,) 6. Then given any G *> 0 , there exists a polynomial

- 13-



(which may depend on E ) such that

- for every 't in. 61..

The extension of this theorem to functionals was already known

in 1910 by Frechet, and in all probability only shortly after that by

Volterra. We will state the functional polynomial approximation theorem,

but must first discuss continuity for functionals.

Let X be the function space defined above. Further, suppose

a metric defined on K ; the distance between "(L) and (t)

is denoted by Then a functional F on X is continuous

at if for any e C ,there exists a ('' C) such that

SFi J - F[j] ] EL whenever V -"

The extension of the Weierstrass theorem to functionals is stated

in Volterra (1959). However, the statement there is loose, and we will not

directly quote him.

Let the function space X be as defined above; and, let there be

a metric on X such that any homogeneous regular functional on X is
continuous. Further, suppose that with respect to the metrix on

F . is any continuous functional, and that C is a compact

set in X Then given any >L 0 , there exists a functional

- 14 -



polynomial P [ J (which may depend on such that

IF i - PfI j e- for all in C
It is seen that functional polynomials possess the same repre-

sentation qualities for functionals as do polynomials for ordinary

functions.

The Stone-Weierstrass theorem is an abstract general statement

which contains the above theorem as a special case. Appendix C makes

use of the Stone-Weierstrass theorem. For the time being, let it be

sufficient to say that Brilliant's (1958) topology, used in conjunction

with the Stone-Weierstrass theorem, indicates that there may be a class

of functionals, occurring commonly in practice, which can be represented

0 0 0by functional power series of the form F~

0
where Po[, I ... K ,.

•4 ( .... - :° -k , I .. .e

The difference here is that the functions ( ) of the function space

X are now defined over the infinite interval -O t < 0

As mentioned earlier, Wiener (1958) has given a procedure for obtaining the

kernels in the integrals of a related scheme when such a representation

- 15-



exists. There are certain fundamental unresolved difficulties - even

when the representation exists - which may be somewhat relieved with

the tools developable with the insertion of Brilliant'r (1958) topology

into the Stone-Welerstrass theorem. We will pursue these lines fdrther

in the third chapter. Although many useful non-linear operators may be

representable by a Wiener type scheme, we shall here deal with problems

for which nothing so nice exists as a uniformly convergent over X

functional power series representation when 4 +) in X Is def ined

over (-oo< . 0] Our interest lies in non-linear ordinary

differential equations of the kind

where % is an n-vector, and is an n-vector whose components are

in general non-linear functions of -t and the components of I.

For simplicity, let the equation take the form

where (') will be some prescribed function of time and %') )

and % are one-vectors. Now in addition, lot the equation

- 16-



possess two asymptotically stable limit points, 'k. and . ( .

and ^A are one-vectors). Associated with X is a region R

and with . a region R2 such that if ( is in for

some , then X (t) stays in for all t > and asymp-

totically X_ (t- ;' ; the same situation obtains of course for

* The two regions are clearly disjoint.

We suppose the process to have been going on from minus infinity

until now, and that there is a functional power series representation

for t = now = 0 . The initial conditions at -ao are supposed fixed

independent of the forcing function C f dt
then

IL K. + S (0)(I W
-00

+ g ( ct."

-. -0

where Ko is a constant. This is the functional power series. Also

if =.4 , then we must be able to write

(o) - + K, (Qk t) Ct

+ V~i (L-.) k (ta) 8. t -1 ,E,+

= in an obvious notation.

- 17 -



There exists an 6 such that an e - neighborhood about the asympto-

tically stable limit point 'X is contained in R I, and an 6 -

neighborhood about I' is contained In . Also, there exists

an N( ) such that

I~( rK for all
0

M > N and all of the function space.

We now choose special forcing functions. Let CS ( ) drive

the solution 'X into region at time CT and then turn off;

i.e., ( (+ ) 0 for t > 'r Similarly let h (+-) drive

,)L (b) into at + --" and then turn off. It is necessary

here to take I (J) and V(0 bounded so that by having T far

enough In the past and requiring that all individual Integrals exist we

can have 6
It, -. (o) I <

N

X (0) YK,,K

- 18 -



IZK0) <

This implies that K. is within E of both "X and which is

the required contradiction. It is to be noted that in any individual

problem, we may not be able to choose parameters, forcing functions,

etc. as required above. However, there will be some not at all patho-

logical equations for which we can proceed in the above fashion. This

is all that is needed to invalidate functional power series expansions

as a general approach. Yet, for certain statistical investigations,

one Is reluctant indeed to give up functional power series schemes;

for the forcing function appears in products with itself and drawing

averaging bars yields output correlations in terms of input correlations

directly. Hence in the remainder of the paper, we shall pursue certain

areas where the special, but nevertheless important, situations allow

of a representation in a form particularly suited to statistical

investigation.

(0.5) Content and Form of the Thesis

The introduction itself is to serve two main purposes. The first

of these is to introduce the reader to the problems and limitations

- 19 -



involved in attempting to obtain general solutions of non-linear equa-

tions. These difficulties have caused the author to adopt certain points

of view. For example, the discussion on the statistical approach in

section (0.2). This, and certain ideas stressed in the introduction,

should serve to orient the reader's point of view sufficiently to obviate

the need for re-stressing in the remainder of the paper. So that again

by way of example, it will be supposed throughout the body of the thesis

that the reader is himself capable of drawing ensemble average bars in

order to obtain statistics as any given situation does or does not require.

The second major purpose of the introduction is mathematical in

nature. Here it is hoped that a reader not already adequately prepared

will gain some mathematical ideas and manipulations to serve as background

for the thesis. Much of this material perhaps need not be explicitly used

in reading through the body of the thesis. Nevertheless, it may prove

valuable background, especially should the reader wish to use the results

on his own problems.

Chapter I deals with a pertubation procedure. The method is in-

herently quasi-linear in nature. However, it does give an important area

for which an all-time representation is possible. Chapters II and III

give results which are truly non-linear in character. The general state-

ments will here hold for only an arbitrarily large but still finite length

of time. Of course from section (0.4) this is to be expected.

In Chapter II, a condition is given, the satisfaction of which

allows of approximate solutions which converge uniformly over all time.

- 20 -



This restriction is simply that for any finite initial conditions, and

zero forcing function, the system damps asymptotically to zero. Under

this condition, Chapter II gives an all time representation scheme for

analytic systems without forcing. When the condition is not fulfilled,

the scheme converges uniformly over any arbitrarily large but finite

time interval.

Chapter III presents a finite time representation scheme for

analytic systems with forcing. The difficulties of an all-time Volterra

expansion are again considered.

The physical problems discussed have been included only to illus-

trate applicability of the abstract statements. In each case, the problem

is briefly set up. It is hoped that later work will carry out the indi-

cated procedures and obtain physically significant results.

One further remark about the examples. Field problems of the kind

dealt with here are formulated by partial differential equations. These

represent a non-denumerable infinity of equations. However, we shall

always suppose that high frequency effects are negligible and that for

physical purposes we could approximately represent the problem by a finite

dimensional mesh space, or by say a finite number of Fourier coefficients.

The reader can suppose that any infinite space is approximable by a finite

one, so that Fourier transforms of probabilistic functions necessarily

exist. However, the theory of formal Fourier representations (Lighthill,

1959) can be invoked should an infinite space and rigorous approach be

desired.

- 21 -



Finally, proofs which are unduly long, complicated, or mathemathical

have been relegated to the Appendices. The Appendices themselves are mathe-

matical in nature. Terms and ideas which are standard are there used without

elaboration.

- 22 -



Chapter I

(1.1) An Asymptotically Stable Limit Point Theorem

It has boon very common to attempt pertubation solutions about

a linear solution. For the most part, when this is done in the liter-

ature, the convergence of the procedure Is simply assumed. In this

section, we present a pertubation procedure for a class of problems

whose convergence is given in Appendix A.

The basic system with which we shall deal here is given by

the equation

(111 X- + G Wt)x + H[-x(+,)I]+ W()
C1t

X(0) =

In this equation, all quantities are continuous functions of time.

and are n-vectors. A is a constant nxn matrix

and G (W: In a time dependent nxn matrix. H [z, is

a vector whose components are each a polynomial in the components

of X. These polynomials are at least of second degree; there is no

linear dependence on the components of X . The coefficients in the

polynomials are bounded functions of time.

There is a condition on A It Is that the eigenvalues of

A all have negative (not zero) real parts. This condition in physical

- 23 -



terms is simply that the system have linear friction. We will come back

to a discussion of the terms in the equation later. Now we wish to state

a theorem which provides a means of solution of (1.11) under certain cir-

cumstances.

We use the notation to denote a scalar which equals

the largest magnitude of any of the components of n whether ) be a

vector or matrix.

Theorem I

For equation (1.11), there exist positive numbers R. P G , and

, each> 0 such that if

11 -Y- 1 < R

Icd)il < Q for all t

< ~. for all t

then the equation can be solved by the following successive approximation

scheme:

(t) is the solution to

A- x + C) , ( =t!

while for ri . I

- 24 -



The successive approximations converge to the solution -X.( ) uniformly

over all time.

This theorem is proved In Appendix A. A more general statement

appears at the end of Appendix A with the above theorem as a special

case. In practice, the applicability of the hypothesis of the general

statement will be too hard to determine. The case presented here will

be useful in many applications.

We return to the requirement of the negativeness of the eigen-

values of A Under this condition, the linear equation

(1.12) A - (

whose solution is

At + (t-"r) T)
0

basically controls the situation for the non-linear equation (1.11)

subject to the smallness requirements of the theorem.

Let us examine the solution to the linear problem (1.12). For

simplicity we suppose the eigenvalues of A not only negative but

- 25 -



At
also distinct. ien t can be written in the form

e eD B-I

vbere D Is adiaonal matrix 0 0 and is

time independent. 00

(1.13) becomes

B B * "-IX.+ f 13"D It

Define R-')

S B-' . :B-'ox (o)

This produces

(1.14) = ( eDt + D(t(T)cvr
0

Or, on a component basis

(1.141) e = (0) + e

- 26 -



From this and the condition < ( 0 , we obtain the bound

By choosing bounds for the initial conditions and the forcing function

small enough, we can keep W uniformly bounded as small as we wish

over all time. This implies the sawe thing for XVU..) 1 )

Changing (1.12) to

(1.1) = Ax + -x4 + c(t

does not alter the situation as long as 6 (t) is bounded small

enough over all time. This can be proven separately from, but in the

mt way as, the theorem stated above and is proven in Appendix A.

Now we have the fooling that as long as a linear solution stays

small, it ought to be a good first approximation to a non-linear equa-

tion. And Indeed., the theorem shows this to be true.

For the equation (1.11), the vector point = is

a solution f or ca (t)C)0 . L =0 is called a limit point.
But actually in our problem, it can be shown (Coddlngton and Levinson,

1955) that under the conditions of the theorem (smallness of I* P

G (+e) , and 5 (E) ,should 5 (+) for all + 'I-,. ,

then each solution tends asymptotically to 0 . The requirement

-27-



of X < 0 is essential here. . 0 is further designated

as an asymptotically stable limit point.

The theorem which we have discussed here, proceeds along much the

same lines as many stability or asymptotic behavior theorems, (Coddington

and Lavinson, 1955; Lefschetz, 1957; Birdgland, 1961). It is presented

here for a number of reasons. Firstly, the theorem as presented here is

in a form particularly useful for application to physical problems. But

secondly, asymptotic behavior theorems require the forcing function to go

asymptotically to a constant. We do not require this for the theorem here,

and hence are led to a somewhat different theorem. This has been done

because we have in mind statistical problems. To illustrate this, we go

back to the successive approximation scheme.

(1.16n) = A% .. + G(t)x,, + H[t, -] + $W ,

X ,n+1 (0) = o

This is equivalent to

(l.17n) I . X

0.

0 0

The first approximation is

MAt A(t-)
(1.171) .X t) = C Xo + e(,r2

0

- 28 -



Since H [ -n] is a polynomial in the components

of ) the successive approximations will produce components of

X n in terms of products of the components of X., a ()

For instance,

OX -()OX 3 (),(~~~,) j.( ) (Ir) could be

one such term.

Products like itL( -Xi (t + ) are approximated uniformly

over time and over all properly bounded initial conditions and forcing
th

functions. Hence the n approximation, taken over an ensemble average,

gives '%jL(t)n L(*nIn terms of ensemble

averages like l 1 OX(y,(')~ T)~e( 3  ~.l

X j)n Xc:(.), converges to(t)- t

uniformly over all time and all sufficiently bounded ensembles of

initial conditions and forcing function.

In this way, one successively approximates the output statistics

in terms of the input statistics. A special but important situation

presents itself immediately. Suppose that G; -)=0 and HL[-t'x

is not explicitly a function of t . H [t-) x] H (x)

- 29 -



Suppose further that all input statistics are stationary. Then all output

statistics will also be statiohary as t -4 00 . That is, a statistic

like XL(t) Xi .(t 4 )')

will go to a definite limit, dependent on , as t --- ao.

(1.2) Viscous Incompressible Two-Dimensional Water Waves

As an example of the possible application of the foregoing theorem

we here set up an approximate viscous incompressible water wave theory.

There is however a serious approximation into which we are forced

right from the beginning. It is that we will try to describe the problem

in terms of a scalar potential. This procedure would of course be correct

in the inviscid case. In fact, special stress combinations will produce

curl free motion, and in these cases the problem can be formulated by the

scalar potential. It is felt by the author that there are difficulties

with the classical viscous linear problem (Lamb, 1932; Handbuch der Physik,

1960). The classical methods do not give the same results as those obtained

here for the linear problem forced by a special curl free motion producing

stress configuration. Hence at a later time, it is hoped that the classical

method for the linear problem, as well as the procedure below, will be

checked by machine computation.
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The defense of an approximation such as we use here must ultima-

tely rest on the fact that it can actually be carried out, and that at

least the form of the results is more or less what one would expect.

It will be easily seen that as the viscosity goes to zero and the ampli-

tudes become infinitessimal, the procedure yields the correct linear

inviscid model.

Let the depth of the water be infinite at - 0 . '

is the mean value of the surface. The lateral dimension is 7. There

is no dependence on

If U stands for the velocity along the X-axis and the

velocity along the -axis, the incompressibility of the fluid intro-

duced into the equation of continuity gives

(1.21) + 0_.

The force equations are

(1.22a) LL W + -J- AFyP+ VL
.it

and

(I. 22b) + LL W F.- +I

where P is pressure, / is density, and F and F are body

forces in the I. and direction respectively. I' is the coefficient
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of viscosity and assumed small. In particular, these equations hold not

only throughout the fluid, but 'also at the surface.

The kinematic condition at the wave surface requires that a particle

on the surface remains on the surface. If ( t ) is the de-

viation from the mean of the amplitude of the surface motion

(1.23)- + - =0 .

There are two other conditions on the problem. They are the stress

conditions normal and tangential to the boundary surface. These will be

determined ultimately from the stress-rate of strain relations.

W
(1.24a) + /

(1.24b) = -Y

(l.24c = P +

To obtain the required relations, we pick an arbitrary point on

the wave surface and draw two sets of rectangular axes each of whose

origins is located at the point. The first set of axes are horizontal

and vertical 't-3-axes respectively. The second set of axes are drawn
I isnrmlt

such that the ".-axis is tangent to, and the £-axis Is normal to

the wave surface at the chosen point. If e is the angle between
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the X- and X - axes, then

for small enough angles. itself is not allowed large. The con-

dition is' a in a smoothness condition on 17

Remembering that PL. = x , and using the transformation

relations of Cartesian Tensor Analysis (Jeffreys, 1931), we have after

neglecting terms with factors of squared and higher orders in ,

(1.25a) P

(1.25b) =+ -P~

We still do not quite have the relations we want. By expanding

in a Taylor series and retaining only through second order non-linearity,

(1.25a,b) become respectively

(1.26a) = + L I3 o

+~

-3 

a
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(I.2b)

+ 17 /

(l.26ab) are the required stress relations.

We will first take up the case of zero boundary stress. From (1.26a)

we obtain the pressure at the surface in terms of the velocity components

sad the aplitude

It is assumed that neither 1 nor the velocity compongnts or

their derivatives are large. Also is very very small. Our major

approximation then is that . will be not quite but nearly equal

to zero. We will come back to this later; but in the immediately following

discussion, (1.26b) will be dispensed with entirely.

At this point we introduce the scalar velocity potential

The force equations (l.22ab) become

[[-, - 1()4

-+ I4 p
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To obtain this we have used = VO ~~'7 hile

$ M 0 from the Incompressibility of the fluid.

This relation holds throughout the fluid, and in particular

at the surface. With the aid of (l.26a) we obtain through second

order non-libearity

In (1.28), consider the operator defined by

Nere I is simply the identity operator. No if the operator

i al in someZ +es sml nogthntef nes

of(.2) onie the operator d a e tined s(iden
1 ,. - .....- ,,.= ,(, .,n,.,.

1956)
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Without hesitation, we make the smoothness assumption that

] is a bounded operator. Then since 1 has already

been supposed very small, the operator ( can be

inverted as described.

Again through second order, (1.28) becomes

(1.29) 3= 1 R C 31 C3=
""') + ca: 0) 3-

~3 30

In terms of the potential , the kinematic condition (1.23)

through second order is given by
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We have now r'nly to set

Lkx
, -- e dk

and substitute in (1.29) and (1.30). Notice that , = 0

which is the incomprelsibility requirement.

(1.29) goes over to

(1.31) Ink

And (1.30) transforms into

d4+ k + f c h-E '

(1.32)"- 
3 --
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(1.30) and (1.32) are in the required form for the theorem to apply,

except that they represent an ,infinite number of equations. For the eigen-

values of the linear part are

ka t:
The cut-off frequency

for k is not large. As discussed in section (0.5) of the Introduction,

for any given numerical problem, only a finite number of equations would

be used. Hence we can suppose that for any practical purpose, the succes-

sive approximation scheme given by Theorem I will converge uniformly over

all time and sufficiently small '7(0, -) and t (o) -Y., 3 )

It is to be noted that in any practical problem, we must be able

to find a > 0such that setting m-for Ikl> ,

is a reasonable approximation. Then since

= I fi ki e<[k* ae ' l-

we will have .- uniformly bounded. This substantiates the

inversion of the operator (T+u j ) as carried out above,

and allows to be approximately - a :L "  •
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Still neglecting for a moment the boundary condition (1.26b),

let us take 151 small but not identically zero in (1.26a),

and investigate the linear problem.

The linearized equivalent of (1.31) and (1.32) with

~ included are

(1.33) +4 =

(1.34) ik IkI4 0dt

Suppose that we solved this linear problem, and then substituted

the results into the linear approximation for the boundary condition

(1.26b). It is the condition which we have neglected so for, and would

lead to the requirement on P. % that

Hence for any small enough , there exists a P .

such that the linearized motion is curl free and given by a scalar

potential. But the same can be said for the non-linear problem.

We equate the left hand side of (1.31) to M and
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solve this equation together with (1.32) by means of Theorem I.

Substitution of the result into (1.26b) gives the condition on

such that one has potential motion, and hence has actually solved

the problem.

Although only a very restricted class of problems can be handled

in this way, the method may furnish some clues about the non-linear

relation between the wave spectrum and the input energy spectrum.
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Chapter II

(2.1) An Initial Value Problem

We will now turn our attention away from pertubation procedures

and obtain a truly non-linear result. The problem under consideration

is

(2.11)- cit

where 4 ()%) is an n-vector. The components of f are each

analytic functions of -1 ° " °  over some rectangle

1±14

This means that for any fixed point in R each component of is

an analytic function in each variable taken one at a time.

Note that we require in addition 4 (40) 0 There is

no forcing function for (2.11).

For the solution to (2.11), we will obtain a representation

theory. The proof depends upon two major known theorems. The proof

itself is an immediate result of the statement of these theorems.

The first theorem needed is due to Poincar6 (Lefschetz, 1957).

One result of this theorem as applied to (2.11) is as follows:
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let and be defined as above. Lat B be a rectangle

of initial conditions defined by

0~~~~ ~ ~~ ) X()LI<6 ! Y

We suppose that the have been so chosen that if %.(0) originates

In B , then the solution for 0 t. J- T remains in

Then about each point in 13,there exists a neighborhood N ('X a)
such that each component of the solution is an analytic function of

L)4., "P.. ) • ' for O - " s d

The second theorem we require is a result from the thoory of

several complex variables (Dochner and Martin, 1946). First let us

define the rectangle X ) 8 as

Then we can state the theorem as:

Theorem II

If a function of several complex variables is analytic in each

variable separately at each point of a rectangle such as X X B
above, then the function is analytic simultaneously in all variables

over the whole rectangle.
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The theorem means that the function can be represented as a

multiple power sories in the 0+1 variables. Zach component of the

solution to (2.11) is given by

(3.12) Z* .. (0) e"~

This series converges absolutely and uniformly over any closed rectangle

such as 0 :SI~j + ~ 1 -5

o -s I s l< AL , =, -. ,

contained in j X

An analytic function of several complex variables has many of

the propertios of a function of a single complex variable. For instance,

the partial derivative with respect to any variable can be found by

changing the order of differentiation and summation. The resulting

series is also absolutely and uniformly convergent over the same closed

rectangle as the original series. The same holds for any number of

partial derivatives. Further one can aum over all Indices simulta-

neously, or sum over one index completely first.

Let us return to (2.12) as a form of solution for (2.11). rince

order of operations like summation and differentiation is imnaterial,

and .(o)- 0 Implies IL(,) - 0 , we can represent the solution

to (2.11) as
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(2.131) ) .('+ j iC;stxo)ts )

n n n

At t 0 this becomes

*(o) 'ZC;(o)t% (0) + I C>i,(O) xis. (o) lLi2(O)

4-. C ILo1

L (0

jt', J.'L" 444 1 (

Since the relation must hold for all -X in 3 We obtain

• L

(2.14) C (o) C.i (o)- ,

(0)()= 0

When we solve for the C S , (2.14) will be the initial conditions.

Now in (2. 11) since i(s analytic, and , 0

we can also represent as
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z VN

We use (2.15) for " (4Z, ") and (2.13) with the conditions (2.14)

for t in (2.11). The resulting equation must hold for all ,CO)

in . This determines that

(2.151) (j fixed

L Z , ,

C" (0) :0

(2.152) a t C .,, w,. . i (j C .I ,,,

t.'-'
CkikLL( C) It k

kkjk f ixed
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it l '3
(2.153) Vo

( S ~ ~ l ~ ~ n- i,. . k , " .

+.~'~ ~ C4~ C

kooL ~

, ~. k.4p~ t, 1

fixed,

"' .tar, (0) -0
where is a forcing function which depends at met

on C*$ already determined.

We wish to emphasize a feature of (2.15a). In terms of the

unknown C... the equation Is linear. We can rewrite
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(2.15n) as an operator equation

kip 0 t k
Ci,.,. (Ln (0 0

where L is a linear operator. The important thing is that L doo

not depend on Y . Hence in any given problem, one determines the

inverse to L only once, and then operates each successive step

with on the already known forcing function. When the coefficients

of the linear term in the expansion for 4 given by (2.15) are constants,

the Inverse operator Is particularly simple. In this case, (2.16.)

becomes

(2. ln) t t'.,L +
n> L

,.. , fixed

,.. o = 0
The solution to (2.17n) In vector form is

(2."ISO Ck. (.kn ) e
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where IC it, and are n-vectors whose

L

components are , i
- 

, and respectively;

4 i a matrix whose components are

(2.2) Conservative Two-Dimensional Vorticity

We here follow Lorenz (1953). The motion is assumed incompressible

and confined to the C - j plane. Hence the velocity components can be

obtained from a stream function

Velocity in the k direction - U . - -

Velocity in the direction = V w

Taking the curl of the force equations (1.22a,b) we obtain the

vorticity equation

(2.21) a --

It is supposed that there are no boundaries. The equation holds over

the whole plane. Hence we represent by

-04
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This leads to

(2.221)

= - ( (,q, , +ci )1dd

since ks) is a real function, f " - ,-n

where the bar denotes a complex conjugate. Taking the complex conjugate

of (2.221)

(2.222)

The total energy in the field is

JL

which by Parseval's Theorem is equal to

++ n 2

The change of with time is zero since the system is con-

servative.
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(2.23) 0

We shall however, be interested in the quantity

which is the energy density over time.

Let us return to the fundamental equation (2.221). This equation

is of the form required by Theorem II, except that it i an infinite

system. We again adopt the attitude that in practice, a finite system

approximation is adequate. Bance we solve (2.221) by the recursive

scheme of Theorem II.

So as not to confuse letters, let A (c) =

Then the scheme indicates the representation for (trf ()

(22) / . (t) = ( ""t Ap~dea
(2.2f,() -0

The initial conditions on the C, S are obtained from the requirement

that *1vmi (0). A;. Bence
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,nn(2.25) C (o) = (

C no

rkS. ,"p, (C)= 0 etc.

Putting this into (2.221) gives first

(2.261) C 0

Hence

(2.271) C : n-,,) g(,)

The next equation obtained is

(2.621) C (t:) =

,,.,s, n;)(,L $L) Crn- r 44S

Taking account of the initial condition , o) -

and 12.t7l), we obtain as solution to (2.262)

- 51 -



mn

(2.272) PC . (t) =

- (~*. ~,~p.+q E (01).4' g(nt,)
(m&'4 nL)

We proceed in the same way to

(2.263) luto =tL)(7

-OP~

PS rArj-S+ C rnS
(V" nL~n [CM M 'i 0 PVI4&.L C O

with the initial condition that (0) 0

Mhe solution to this is (2.273).

(2.273) (+)

-4 . ( , - , ) ( ,a ' + q 2 ( 4 ' ) C -, -+,} o , - ( n- - ) ,

52 C' ,. 4 ¢ - , )c-., i.]
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It is easily seen that all of the ,' will combine to give,

for fixed initial conditions, a Taylor series type expansion over time.

This is because the original equation (2.221) had no linear term on

the right hand side.

Now the scheme (2.24) will converge uniformly over t and Aei

for bounded t and bounded Apo (This is strictly true when only

a finite number of A's are used). But a Taylor series does not often

converge rapidly. Nevertheless, the scheme (2.24), when used to obtain

the energy density, will perhaps be useful in studying the stability of

statistically described flows over a small but finite time interval.

The reader is again refered to Lorenz (1953) who initiated there the

instantaneous stability problem.

The convergence problem being as it is above, we turn in the

next section to a dissipative system where this difficulty Is overcome

in a definite sense.

(2.3) Non-Conservative Turbulence as an All-Time Problem

I
We envision a two-dimensional viscous fluid extending over

(The three dimensional problem would follow in the same way as below).

The basic force equations have been given in section (1.2) as

equations (l.22a,b). We will use
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- U 4-4- W V 7-
(2.31s) 7-+ +. --- c

The quantities in (2.31ab) are defined as In (1.22a,b). The equations

(2.31ab) are the same as (1,22ab)., except that the external field has

been deleted.

In addition, we still have the equation of continuity.

(2.32) Ax+o

This Is the sae as equation (1.21).

By manipulating (2.31a,b), and using (2.32), we obtain

(233 VIP a ( i)+ (C) 2 au _)

At this point we introduce Fourier coefficients.

PP

Lt 4m,
-C -'



A slmilar expression obtains for W

There are no boundaries In the problem. Bence the operator is

easily inverted in the Fourier domain. (2.33) implies

000

(2.34) on ((3ab)8 vr"1 t,,.., I -td rrr r, U..ri ,U ,, .. ,]i-,

-0

+ q r

S_ - p. _v ...- .j

Dqutions (2.31a,b) go over to

(2.38a) + atLu.S o + r, D fa -C n_31

-iS - & +n)U

LM

V(#-2 n1) yn

P~n Iis expressed In terms of UMV% and Vwr~n

through (2.34). Ta~king (2.34) Into accout, the limear approximtion
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to (2.35ab) is

(2.36a) -4- n'~) Ltr,,
at

(2.36b) = 4 ) an,,

The solution to (2.36a,b) is of course

S C = ..J,,,L..o) f

We will not do so, but could here go through the same procedure

as in section (2.2), and indicated by Theorem II.

It is perhaps possible to see by inspection however, that unlike

the preceding problem, we will here not get (for fixed initial conditions)

power series in time. Rather, we will obtain a series whose terms are

constants or damping exponentials. Hence (2.35ab) with (2.34) are dif-

fusion type equations. This is because we have deleted any external field

such as the gravity field.

It might at first be supposed that because we have to deal only

with damping exponentials, that the representation scheme of Theorem II

would in some way converge uniformly over all time. This is unfortunately

not true in general. There exist not at all pathological systems such that
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with initial conditions fixed, each term in the representation series

will be a damping exponential; but the series will not converge as

However, in our present case, we have a special situation. The

non-linear terms are conservative, while the linear term is dissipative.

The total energy continuous decreases and asymptotically goes to zero.

This implies that for arbitrary 6 0 C , there exists a 0 (

such that

and [ ~(.I

implies ' (t) I for all t > C

and for all

In addition, I and ()I and IV o (4) I - 0

It is shown in Appendix B, that there then exists a '(f 1 )

such that for any R> 0 and 6, 0
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implies C,) [Iu A f U V" (t)]

for all T R -

Since for any and and r (R)6/a) , there exists

an 6/. approximation to the solution uniformly over all initial con-

ditions bounded by R and C bounded by T , setting the approximate

solution equal to zero for t > I gives us a representation scheme

which converges uniformly over all time at a rate dependent only on the

bound on the initial conditions.

Once again, the special property of the above system is that any

bounded initial starting configuration damps to zero asymptotically.

Other systems satisfying the conditions of Theorem II, while at the same

time displaying this property, can be handled in the same way.

Batchelor (1960) has suggested that in homogeneous turbulence,

the velocity correlations become Gaussian as "- C Z< regardless

of the form of the initial distributions. We mention this as suggestive

of at least one experiment to be undertaken with the above results.
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!

Chapter III

(3.1) Equations with Forcing Functions

Over an Arbitrary Large But

Finite Time Interval

In the preceding chapter, the equations had analytic right-hand

sides, but were without forcing functions. This chapter retains the

condition of analyticity while allowing the equations to possess a

forcing term. Our basic system in this chapter will take the form

(3.11) = A-L +4 ')4) -4-*
dt

where A is an nxn matrix, and ' , { and Q are n-vectors.

has no linear dependence on . Also, if (c)) were

not equal to zero, we could incorporate this term of { into

Hence we explicitly assume 0 (Q+) = C) On a component basis,

we can write " as

(3.12i) (±ox-) L 'i~' + i 1p '. $

+ .

wherein we have employed the summation convention that any repeated

index is to be summed unless otherwise specified. This convention

will be in effect throughout the chapter. We have supposed f to have

a finite number of terms for convenience.
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We are going to introduce a representation scheme which is to hold

over any finite time and for at least some large class of forcing functions.

The scheme is essentially that of Volterra Functionals. We have already

made mention of Volterra Functionals in the Introduction.

We will proceed formally at first. Statements about convergence

will be made later. The proofs are mathematical and left to Appendix C.

Consider the simple first degree scalar equation

(3.13) ._E + - X 4-. )

(3.13) is equivalent to

(3.14) X() X 4 e ( -

0

If (t) is representable by Volterra Functionals

KO+ ~K,(<)~Ir
(3.15)o

At ( K. () , It is clear

that K. () is a solution to

(3.16) l .() Ko-}[Ko C )) K,(0) &0
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In what follows, we adopt the attitude that Ko(O is already

determined. This can be done by the methods of the preceding chapter,

or by any other means.

We put (3.15) into (3.14). This is to hold for all J(t) in

some large class, so we equate kernels of like homogeneity across the

equation. In this way we obtain

± ±

0 o

T(3) =0 for

This Is satisfied by setting

(3 .1 7 1 ) + o . ' K

T acts here only as a parameter.

(3.171) can be solved analytically over any finite interval

(Volterla, 1959; also Kolmogorov and Fomin, 1957). The method is

simply successive approximations which are shown to converge uni-

formly over the time interval.
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In the same way, we obtain next

(3.172s) ) o A

+ =6 K.* (C') K, (t' ,'r) o)) e'

and act am parameters. We have again the smae sort of linear

integral equation f9r .as for K, . Notice that when K . ) ,

we obtain K, and KX directly. o (±) 0 when )(0)= C

The expression for K 3  is no more involved.

(3.173)

, for ,T. orT, > t

We will not do any more of this, but rather go on to the more

general problem covered by equation (3.11).

The equivalent Integral equation formulation for (3.11) is

(3.168 .(k) = eP 621 ( +
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A(t -t')
We use (3.18), but first met e " B(* -')

to obtain on a component basis

o

+~~~ +B(-'4 , (tI)%i (t -)to')a(tMee P+t

S- (B- fi i-.' ... kt, ,')-k W -k W <.t)a

0

where it is understood that a repeated index is summed.

We now form a functional representation scheme for a (-)

The repeated index summation convention continues in effect.

(3.1201) I

k k
o 

k.

In the same way as the first example, the introduction of (3.120) into

(3.191) leads to
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(3121 L C:,r K ,C -
+slsl 6'- (t - )K +)mKk

'0

+5

where K f or
with k and fixed and L n and

can be considered parameters. (3.1211) is a system of linear integral

equations. These can be solved by successive approximations. The theory

for this is essentially the same as quoted before (Volterra, 1959).

K (') is the solution to (3.11) when there is no forcing

function We must suppose already determined.

Again, if necessary, this can be done through the method indicated by

Theorem II. Notice that if I(0) Q" 0 and

. (+) rT) can be obtained from (3.1211) directly.
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We next determine L)

(3.1212) ~~)

=

+ 3 (t -to) (t ) K. (C) ( t', ) <Kk t R

+n(n-i) (tW
t

0
Koo ni-' I  , to Kok,(L --K- ( o-t ) ) .

+ + :B (t t ) (to)

where C) for V>t orT>
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Notice again that if the V (o) ( Q , then K0) Q

nd ",, ") can be determined directly. Also, both Iia nd X (t,

and L are obtained by inverting the same linear operator when

re(At) ~ C for all I o Thus even for this very complicated

and general came, one ban see that to obtain any order kernel,

, the same linear operator is to be inverted independent

of I

We will not write out the expression for L K or the higher

order kernels. One proceeds in the same way as above, but of course obtains

increasingly more complicated and tedious expressions.

Let us consider " (t) in greater detail. As already mentioned,

K, Wz is the I component of the xolution when the forcing

function n-vector q (t)m 0 . As such, by the previous chapter, K.k)

is expandable as

(3.122) K,() = x + "Li ()
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The expansion converges uniformly over all bounded time and initial

conditions. If the problem is non-linear, then correlations down

an ensemble involving the solution components will, at least formally,

be given in terms of ensemble averages of products of initial position

components and forcing function components.

The legality of the formal procedure employed above is given

by Theorem III below. In order to state this theorem, we first define

a phase space. The space is 2n+ I dimensional. A point in the

phase space is given by the components

t.

where L~ h unless (1 9) 1 ()fj' W0
0

The differential equation (3.11) can be thought of as an operator which

assigns to each point of the phase a real number.

A subset dx A x G of the phase space Is the set of all

points such that

I% {°})I -<  AL , a I, , .,,

for o -" -1

Now we can state the theorem.
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Theorem III

For arbitrary but finite d , A , and G ) the representation

scheme (3.110i) converges to the solution of (3.11) uniformly over

A dG

The proof is in Appendix C.

(3.2) More About All-Time Representations and Concluding Remarks

In Chapter II, the simple condition that an unforced system damp

asymptotically to zero allowed an approximation scheme to converge uni-

formly over all time. Here, where we are specifically interested in

systems with forcing functions, we are unable, at least at this time,

to obtain any corresponding result.

The Introduction shows that if an unforced system does not damp

asymptotically to but one limit point, then the same system with forcing

cannot in general have an all-time Volterra functional representation.

Unfortunately the converse is not true. Consider the system

'suggested by Professor Edward N. Lorenz.

(3.21) -L +
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When is set equal to zero, (3.21) can easily be

manipulated into

(3.22) . T t 2 :

From this it follows that every solution of the unforced system damps

asymptotically to zero.

However, when , the points Cit, I, %. )

and (1Cc = - I) are stable limit points. The point

) ' 4 L ) is an unstable limit point. The behavior of

the system at t is discontinuous with respect to initial

conditions, and hence an all-time representation which would converge

uniformly over all time and arbitrarily large but bounded forcing

functions and initial conditions is beyond our grasp at the present

time.

Nevertheless, it should be emphasized that those cases where

statistically stationary forcing functions actually produce asympto-

tically stationary solution statistics for some definite initial

condition, are approachable by the finite time representation scheme

of section (3.1) on a computational basis.

Suppose then, that computationally after some finite time, we

are able to obtain a reasonably good estimate to the steady statistics
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of the solution for a stationary forcing function and a particular initial

condition. Now each state of the system within the finite time interval

can be considered a new initial condition with the same stationary ensemble

of forcing functions. Hence for each point on the finite-time trajectory,

and now considered as an initial condition, the stationary statistics are

in all cases the same.

The theory for all-time representations of systems with forcing

functions is admittedly not yet at a stage at which one is satisfied.

However, it is hoped that by machine experiments, the above theory will

enable one to mark of those sections of a phase space which under an ergodic

ensemble of forcing functions are transformed by the differential equation

operator within themselves.

The effort involved in such a project must of necessity be great.

Even for problems of the kind considered in Chapter II, where the theory

is more developed, any practical problem will require considerable labor.

This is an unfortunate, but certainly to be expected, aspect of non-linear

analysis. Non-linear problems can present difficulties which do not exist

for linear problems. We shall perhaps, simply have to become used to paying

more for results in the non-linear case.
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Appendix A

The equation first .in question is of the form

(Al) -A G# W 7- + G, (04P - W

dt

where '40 and are n-vectors, G, (*) and C 3.() are

continuously time dependent nxn matrices, A is a constant nxn matrix,

and T (X) is an n-vector whose components are second degree or higher

order polynomials in the components of IC.

At t = 0 , 7(0) .L is the necessary initial condition.

(Al) is equivalent to

"X.( : : e. A + A ' " t( ') a '

(A2)

+ Al A( --

G

We are supposing that Y-C() W 0 is an asymptotically stable

limit point. Hence the eigenvalues of A all have negative real parts.

Every term of e is of the form p-

where the real part of A is negative (Lefschetz, 1957). Each such

term is bounded ,and absolutely integrable.
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We use II to denote the norm of a vector or.matrix.

Unless expressly stated, the norm of a vector or matrix will be taken

to be the maximum of the component magnitudes.

Then

t- ° exists, in finite,

and we denote it by H

The nature of ' () indicates that there is a region about

the origin defined by I[ 4 < R ,such that for ' in this

region, I (x)II F and

where in addition, F-- C- as R-and L -- 0 with

F is the bound for £(') and L is called a Lipschitz constant.

We next must set up a particular normed space. Let C k 6.)

be the set of continuous n-vectors, 4 (t) , on a closed interval

O t 4 ] That is, each component of ti(t)is a con-

tinuous function of time on [O d The norm of (t) will be

taken as the greatest magnitude of any component for any t in [O)]
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To be more precise,

We manke the additional restriction that for to belong to

the set o })

With this, C (Co) Is a complete metric space ( -olmogorov and

Fomin, 1957).

We wish to show that when is substituted into the

right side of (A2), we have a contraction mapping. A mapping 7 of

a metric space X into a metric space Y is said to be a contrac-

tion mapping if for all t and X- . in

where is a positive number <

Consider the mapping defined for [0 1 A]

(A3) A

+ I AL- G-r)[*e )]Jr f-  A [ t-T ),
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Then 6L q"L z6 X)fS

.h°.. Ilay i I r A , ,Lt---

p b d T) eGst.rLng C TO) o 6P u l

whc ctrison H LIpping.OM

0[

Then for 11L, I and IGI
simply bounded, there exists an R forcing L(R to be sufficiently

small so that n' J [H J + LIC.i] Hence, (M3) is

a contraction mapping.

We next show that this mapping takes Coo) into itself.

From (A3), at the time
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II ~l~ A~'~ i ~ + i~ ef Sj I~ I I 4I C 1'11s1

Here = + If- 6A[I II Ij

As mentioned above, there is a bound 6 such that

i'L B forall in '

Thus I I - ii ol + nH I111

+ ,, H[IICi.11 + IIG2iF]
Since F-40 as b for 1 and

small enough, there exists b such that II (t')ll -I 6
for all L This shows that the image of the contraction mapping

given by (A3) on C ( is in C- (b) for some b with

suitable restrictions on the initial conditions, the matrix G, (t)

and the forcing function (+)
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There is a contraction mapping theorem (Kolmogorov and Fomin,

1957) which ways that if I is a contraction mapping of the complete

metric space C* (6) into itself, then the equation MP7[4]

possesses a unique solution. Further, can be found by successive

approximations. That is if is any element of C (b, , and

we define

a .3 lnMf 34L I'r etc.

then Lorn

This means that for (A3) we can define

~e A- -x + Ar(wa cr

0

and recursively obtain

A(*eA A~, h ~x (~ )AT0

4 f rA(*-'InC-k- (T)] J(T )4- +

The successive approximations approach t(t) , the solution vector,

uniformly over [0) dl That is, for any £ there exists an

N (e) such that for all ni N (6)
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for all t in [c) d].

Finally, although the functions in C (6) have been supposed

defined only on [0) '] , the conditions shown sufficient to insure

(A3) as a contraction mapping of C*(j) into itself have none of

them been dependent on d . Thus the successive approximations converge

to the solution vector uniformly over all time.

One generalization follows easily. It has been required of

I ((p) only that each component be bounded over time. If equa-

tion (Al) is replaced by

(A4+ -4+-~

where each , , . is bounded uniformly over

time, it is clear that the above results are still valid.

The vector sun

:qA (+ ) ;a (1I) + ' + Gn (tFn& can be combined

into the single vector H ) X(1 I . Each component

of H [ 1 will be a finite polynomial of degree 2 or greater
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in the components of 7- , and the coefficients will be uniformly bounded

functions of time. With this, (A4) becomes

(M5) + A~ G t + H k, -CLt

Another generalization can be obtained. Consider the linear equation

(A6) +_

If the solution to (A6) is bounded for every bounded initial condition

and every bounded t+) . then the same kind of results an obtained

above hold for

(A7) __ 13 3(t)% + [H It:) +

We will not go through a proof, but simply state a result which allows one

to use the contraction mapping method as before.

(A7) is equivalent to

(. , = X ( ).+ X (.) 'X -) H[T- .,(i)] ,. "i

+ X X'&) ('T)d T
/ 0

where X () is the solution matrix for (A6) with (i) set equal

to zero.
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Under the condition that (A6) give bounded solutions for bounded

forcing functions, Bellman (1948) has shown that

lllX (f)(- )11d is bounded for all t

and that , Lim) This last implies of course

that 11XQ lI is also bounded for all time since Xt) is

con tinuous.

The contraction mapping method goes through as before, and we

are now able to summarize our results in the following theorem.

Theorem

If for equation (A6)

(A6) B

every bounded forcing function c j) , with bounded initial con-

ditions a produces a bounded solution, then there exists

an R>O and a >0 such that for II 1 R and

II (<4A) I.I < 5 for all t ,the equation (W,)
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(M7) =+ H[4:)L + w(+)

can be solved by successive approximations. The approximations are

determined by the linear equation

(A9) H()~.s 4 [PC)1 +

with +; and

converges uniformly over all time to the solution I (A)

A special but important case arises when [Qt) is a constant

matrix plus a pertubation time dependent matrix.

If the eigenvalues of A all have negative reaL parts, there exists

a G > 0 such that for 11 G (+) 1 < C every solution of

C t

is bounded for bounded c(Lt) and en- ; and hence the hypothesis

of the theorem is satisfied.
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Appendix B

Asymptotically Stable System

We will deal with a system

(Dl) d

where t and { are n-vectors and 4(o1 ) - 0 . Further,

it is supposed that the solution .(+) to (Bl) is asymptotically

stable.

Let be an arbitrary but fixed bound on the initial conditions.

That is

Then the set (w) of initial conditions defined by 1 )
is compact.

Let f be any point in 5 (f) . By supposition, there exists

a v C/a) such that the trajectory originating at f

at 0 - is within 9 a of zero for all±+ -- r( IV S/;k)

By known results (Lefschetz, 1957), there exists an open neighborhood

N(F , / ) with the property that all points 1 in N(e $/a)
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at 0 0 are within / , at t , of the trajectory

originating at H Hence all in (ri , sl/.) are within

of zero at *

For each point r in R) there exists such a neighbor-

hood N ~Since '() is compact, a finite number

of these neighborhoods cover '~~() It follows that for arbi-

trary S 0 and R' > 0 ,there exists a t,(6j,)

such that all trajectories ih- - wit

end up uniformly I)L+)I for all >
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Appendix C

The fundamental equation with which we deal is

(Cl) t. +

where X , , and c are n-vectors. "(X.)t) is analytic

in ('Y-..,) t ) . However, we will assume for convenience

that the form of the . component of f is

(C2) = 'Xt) j +-~()~

For (C2), and the rest of Appendix C, the summation convention applies.

For bounded time, the ( are bounded

functions of time.

The problem is defined over the finite time interval [o - - ].

It is assumed that over [0) 8 ] , bounded forcing functions produce

bounded solutions to (Cl). Let be the bound for (4) , and
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R the bound for X (t) That is,

[P, f ..ora al

L~ n

when [Ig )Ij G for all 0 _5 S

There is then a bound F for + () ")

[I€ ,)] - F for all [o -t cJ]

and all iG.L.) i

)

Further, there exists a Lipschitz constant L such that*

at any t in [O)c~ an all - bounded by R

Now (Cl) is equivalent to

6 0

We wish to show that the right side of (C3) defines an operator which is

continuous on a certain topological space to be defined later.
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Consider f irst the quantity [wh(e)r- e () ] , where

is defined by

(CO) ~ (+.) 0 +- [ [)(,T) e] T + _
G0

Let, for definiteness, t| t Then with the above defini-

tions of bounds, the following inequality will hold.

+ 00[('-k )-)]I
o

+ L(,"[ i ( 1  -t( ) ] '  + (F +cG) (t t-o)

(C5) suggests a topology for the space of forcing functions. We

say that V is in an e neighborhood of c (+) if and only if

I,1

for all and any [ , in the fundamental inte.rval f Ci]

Actually, this is a well known topology, and is called the weak topology

induced on L [0) c ] It is also a known result that the Pet

of all L [C, c] integrable functions, C , for which

S-forall in [) C andall
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is a compact set under the weak* topology defined above. (Dumford and

Schwartz, 1958; corollary IV 8.11).

We return to (CS) and restrict + to be in [C) X] where

XL = -< < I . Notice that since LA. (s) is

continuous on [ c, c] , it is uniformly continuous there.

Now let an arbitrary G, C be chosen. Then there exists >0

such that f -, IJ,.- . I < 6 for all

whenever I - < .Hence for -± <

and all t in [o, ], and with -<

for all Land I VL' Fit A <6; for all
0

and all in 0 ] ,

then L '~ I~ _'~t) I <O

which is < 6 for E, ) 6. and S chosen small enough. X, a, 1

and 3 , do not depend on t

We can break [c a ] into a finite number of overlapping

intervals each of length no greater than X The immediately preceding

analymi can be produced on each sub-interval. All this implies that
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for arbitrary e >0 , there exists a ( ) such that

I F~~t) - ~J~) ~ 6for all L at any -t

in [0) ] whenever

(C6apb,c) %.L (C) - SL(o) for all L

and

o<

for a1ll and all t in 0 ,
o The product space defined as the set of (2n+l)-vectors

is given the topology indicated by (C6abc). This is a product

topology on a product space. Hence the set cIX A X G1  of

points in S such that

l -L(0) I _ A forall

I~L t) 7S G for all L

and all t in [0) d]

is a compact set under the product topology defined.
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It is an immediate consequence of Brilliant's (1958) results that

the Volterra functional polynomials

IK[+i ]+ k ')%0or] (,T)cjT

K.+f Ik °  )T]

CkL,

+, •* + .. (i '"' , .oj.,

o 0

2• (, C ).-- ° * ) ', . * '

are continuous on with respect to the product topology defined

through (C6a,b,c). Since J x A < G is compact, and since it

is clear that the functional polynomials separate points of S , by

invoking the Stone-Weierstrass theorem, we can conclude that the

solution to (Cl) can be approximated uniformly over d ? A C,

by a finite system of Volterra functional polynomials.
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